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Abstract

Applications of data assimilation techniques have been widely used to improve hydro-
logic prediction. Among various data assimilation techniques, sequential Monte Carlo
(SMC) methods, known as “particle filters”, provide the capability to handle non-linear
and non-Gaussian state-space models. In this paper, we propose an improved par-5

ticle filtering approach to consider different response time of internal state variables
in a hydrologic model. The proposed method adopts a lagged filtering approach to
aggregate model response until uncertainty of each hydrologic process is propagated.
The regularization with an additional move step based on Markov chain Monte Carlo
(MCMC) is also implemented to preserve sample diversity under the lagged filtering10

approach. A distributed hydrologic model, WEP is implemented for the sequential data
assimilation through the updating of state variables. Particle filtering is parallelized
and implemented in the multi-core computing environment via open message passing
interface (MPI). We compare performance results of particle filters in terms of model
efficiency, predictive QQ plots and particle diversity. The improvement of model effi-15

ciency and the preservation of particle diversity are found in the lagged regularized
particle filter.

1 Introduction

Data assimilation is a way to integrate information from a variety of sources to improve
prediction accuracy, considering the uncertainty in both a measurement system and20

a prediction model. There has been considerable advances in hydrologic data assim-
ilation for streamflow prediction (e.g., Kitanidis and Bras, 1980; Georgakakos, 1986;
Vrugt et al., 2006; Clark et al., 2008; Seo et al., 2003, 2009). State-space filtering
methods based on variations of the Kalman filter (KF) approach have been proposed
and implemented due to their potential ability to explicitly handle uncertainties in hy-25

drologic predictions. However, the KF approaches for a non-linear system such as
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the extended Kalman filter (EKF) have limitations in the practical application due to
their instability for strong non-linearity and high computational cost of model deriva-
tive equations, especially for high-dimensional state-vector problems, such as spatially
distributed models. To cope with the drawbacks of the EKF, the ensemble Kalman fil-
ter (EnKF) was introduced by Evensen (1994). The EnKF is computationally efficient5

due to no need of model covariance estimation, but it is still based on the assumption
that all probability distributions involved are Gaussian. Further reviews of Kalman filter
based applications for hydrologic models are shown in Vrugt et al. (2006), Moradkhani
(2005b, 2008) and Evensen (2009).

Another approach to data assimilation is the variational assimilation (VAR), which10

has achieved in widespread application to weather and oceanographic prediction
models. In hydrologic investigations, VAR is implemented for estimating spatial soil-
moisture distributions by Reichle et al. (2001) and for assimilating potential evapora-
tion and real-time observations of streamflow and precipitation to improve streamflow
forecasts by Seo et al. (2003, 2009). Although variational methods are computationally15

efficient than KF-based methods, the derivation of the adjoint model needed for mini-
mization of a cost function is a difficult task, especially in the case of non-linear, high
dimensional hydrological applications (e.g., Liu and Gupta, 2007).

Among data assimilation techniques, the sequential Monte Carlo (SMC) methods,
known as particle filters, are a Bayesian learning process in which the propagation of20

all uncertainties is carried out by a suitable selection of randomly generated particles
without any assumptions about the nature of the distributions (Gordon et al., 1993;
Musso et al., 2001; Arulampalam et al., 2002; Johansen, 2009). Unlike the various
Kalman filter-based methods that are basically limited to the linear correction step and
the assumption of Gaussian distribution errors, SMC methods have the advantage of25

being applicable to non-linear and non-Gaussian state-space models. The application
of these powerful and versatile methods has been increasing in various areas, including
pattern recognition, target tracking, financial analysis, and robotics.
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In recent years these methods have received considerable attention in hydrology and
earth sciences (e.g., Moradkhani et al., 2005a; Weert and El Serafy, 2006; Zhou et al.,
2006; van Delft et al., 2009; van Leeuwen, 2009; Karssenberg et al., 2010). Since their
first introduction to the rainfall-runoff modeling by Moradkhani et al. (2005a), Weerts
and El Serafy (2006) compared the ensemble Kalman filtering and the particle filtering5

for state updating of hydrological conceptual rainfall-runoff models. The SMC methods
have also been applied for parameter estimation and uncertainty analysis of hydrolog-
ical models. Smith et al. (2008) evaluate structural inadequacy in hydrologic models,
Qin et al. (2009) estimate both soil moisture and model parameters, and Rings et al.
(2010) implement hydrogeophysical parameter estimation. Uncertainty of a distributed10

hydrological model is analyzed by Salaman and Feyen (2009, 2010) and dual state-
parameter updating of a conceptual hydrologic model is applied for flood forecasting
by Noh et al. (2011). The diversity of assimilated data and models has been increas-
ing; snow water equivalent prediction model (Leisenring and Moradkhani, 2010) and
assimilation with remote sensing-derived water stages (Montanari et al., 2009). How-15

ever, the framework to deal with the delayed response, which originates from different
time scale of hydrologic processes, routing and spatial heterogeneity of catchment
characteristics and forcing data especially in a distributed hydrologic model, has not
been thoroughly addressed in the hydrologic data assimilation. Furthermore, alterna-
tive methods proposed in the literature to mitigate loss of sample diversity (e.g., Musso20

et al., 2001; Arulampalam et al., 2002), which may cause collapse of filtering system,
have not been studied in hydrology.

In this paper, we apply particle filters for a distributed hydrologic model to enhance
forecasting capability of streamflow. A lagged particle filtering approach is proposed
to consider different response time of internal states in a distributed hydrologic model.25

The regularized particle filter with the Markov chain Monte Carlo (MCMC) move step
is also adopted to improve sample diversity under the lagged filtering approach. The
proposed filtering approach is evaluated with its prediction accuracy, predictive QQ
plots and particle diversity in comparison with other types of filtering approaches.
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A process-based distributed hydrologic model, WEP (Jia and Tamai, 1998; Jia et al.,
2001, 2009), is implemented for sequential data assimilation through state updating of
internal hydrologic variables. Particle filtering is parallelized and implemented in the
multi-core computing environment via open message passing interface (MPI).

The paper is organized in the following way. Section 2 outlines the Bayesian filtering5

theory and particle filters. In Sect. 3, a lagged filtering approach is introduced with
additional regularization step to reflect different response of internal processes in se-
quential data assimilation. Section 4 presents the case study results demonstrating
the applicability of proposed particle filtering approach. Several SMC filters are eval-
uated for real-time streamflow forecasting in the Katsura River catchment using the10

WEP model. Sequential data assimilation is performed by several different schemes
of the particle filters: lagged regularized particle filter (lagged RPF), lagged sequential
importance resampling (SIR) and SIR particle filter. The performance results of various
SMC methods are compared via model efficiency, predictive QQ plots and ratio of the
effective particle number. Section 5 summarizes the results and conclusions.15

2 Method of particle filters

In this section we briefly describe the theory of Bayesian filtering and sequential Monte
Carlo (SMC) filtering for its suboptimal solution in non-linear and non-Gaussian cases.
Several variants of SMC filters are explained including sequential importance resam-
pling (SIR) and regularized particle filter (RPF), which are based on the sequential20

importance sampling (SIS). The detailed description of sequential Monte Carlo meth-
ods can be found in Arulampalam et al. (2002) and Moradkhani et al. (2005a).
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2.1 Bayesian filtering theory and basic particle filtering methods

To define the problem of the Bayesian filtering, consider a general dynamic state-space
model which is described as follows:

xk = f
(
xk−1,θ,uk

)
+ωkωk ∼N(0,Wk) (1)

5

yk =h(xk ,θ
′)+νk νk ∼N(0,Vk) (2)

where xk ∈<nx is the nx dimensional vector denoting the system state at time k. The
operator f :<nx →<nx expresses the system transition in response to the forcing data
uk (e.g. rainfall, weather data) and parameters θ. h : <nx →<ny expresses the mea-
surement function having parameters θ′. ωk and νk represent the model error and the10

measurement error, respectively and Wk and Vk represent the covariance of the error.
In the Bayesian recursive estimation, if the system and measurement models are

non-linear and non-Gaussian, it is not possible to construct the posterior probability
density function (PDF) of the current state xk given all the measurement y1:k = {y,i =
1,...,k} analytically. When the analytic solution is intractable, an optimal solution can15

be approximated by SMC filters.
Sequential Monte Carlo (SMC) filters are a set of simulation-based methods that

provide a flexible approach to computing the posterior distribution without any assump-
tions about the nature of the distributions. The key idea of SMC filters is based on point
mass (“particle”) representations of probability densities with associated weights as:20

p(xk |y1:k)≈
n∑

i=1

w i
kδ

(
xk−xi

k

)
(3)

where xi
k and w i

k denote the i th posterior state (“particle”) and its weight, respectively,
and δ(·) denotes the Dirac delta function. Since it is usually impossible to sample from
the true posterior PDF, an alternative is to sample from a proposal distribution, also
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called importance density, denoted by q(xk |yk). After the several steps of computation,
the recursive weight updating can be derived as follows:

w i
k ∝w i

k−1

p
(
yk |x

i
k

)
p
(
xi
k |x

i
k−1

)
q
(
xi
k |x

i
k−1,yk

) (4)

The choice of importance density is one of the most critical issues in the design of SMC
methods. The most popular choice is the transitional prior as:5

q
(
xi
k |x

i
k−1,yk

)
=p

(
xi
k |x

i
k−1

)
(5)

By substituting Eq. (5) into Eq. (4), the weight updating becomes

w i
k ∝w i

k−1p
(
yk |xi

k

)
(6)

The sequential importance sampling (SIS) algorithm shown above is a Monte Carlo fil-
ter that forms the basis for most SMC filters. A common problem with the SIS algorithm10

is the degeneracy phenomenon, where after a few iterations, all but one particle will
have negligible weight. A suitable measure of the degeneracy is the effective sample
size neff estimated as follows (Kong et al., 1994):

neff =
1∑n

i=1

(
w i
k

)2
(7)

If the weights is uniform (i.e. w i
k =1/n for i =1,...,n) then neff =n. If all but one particle15

have 0 weight, then neff =1. Ratio of the effective particle number nratio is estimated as
follows:

nratio =
neff

n
(8)

The maximum of nratio is 1 when the weights are uniform. Small nratio indicates a severe
degeneracy and vice versa. nratio is used as an indicator of degeneracy in this study20

because it can be used easily regardless of the particle number.
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The degeneracy phenomenon can be reduced by performing the resampling step
whenever a significant degeneracy is observed. Thus, the sequential importance re-
sampling (SIR) particle filter is drived from the SIS algorithm by performing the re-
sampling step at every time index. The idea of resampling is simply that particles
with very low weights are abandoned, while multiple copies of paraticles are kept with5

the uniformly weighted measure {xi
k ,n

−1}, which still approximates the posterior PDF,
p(xk |y1:k) (van Leeuwen, 2009).

Resampling is one of the key issues in the SMC filters and there are various re-
sampling approaches that have been introduced in the literature such as multinomial
resampling, residual resampling, stratified resampling and systematic resampling, etc.10

A comparative anlaysis and review of resampling approaches can be found in Douc
et al. (2005) and van Leeuwen (2009). Systematic resampling, also known as stochas-
tic universal sampling, is often preffered due to its computational simplicity and good
empirical performance. It has been also shown that systematic resampling has the
lowest sampling noise (Kitagawa, 1996). Hence, we use systematic resampling for all15

particle filtering cases in this study. It is worth noting that there are several choices in
resampling methods and the proper method may be different according to the charac-
teristics of hydrologic models. See Weerts and El Serafy (2006), Rings et al. (2010),
Salaman and Feyman (2009) for residual resampling, see also Salaman and Feyman
(2010), Moradkhani et al. (2005a) for systematic resampling. Although the SIR method20

has the advantage that the importance weights are easily evaluated, as resampling is
applied at every iteration, this filter may lead to a sudden loss of diversity in particles
and is sensitive to outliers.

2.2 Regularized particle filter

The positive effects of the resampling step are to automatically concentrate particles25

in regions of interest of the state-space and to reduce particle degeneracy. However,
the particles resampled from high weights are statistically selected many times. This
leads to another problem, known as sample impoverishment, which means a loss of
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diversity among the particles as the resultant sample will contain many repeated points
(Ristic et al., 2004). There have been some systematic techniques proposed to solve
the problem of the sample impoverishment. An alternative solution is to introduce the
regularization step when the sample impoverishment becomes severe. Regularized
particle filter (RPF) is based on regularization of the empirical distribution associated5

with the particle system using the kernel method (Musso et al., 2001). The main idea
of RPF consists in changing the discrete approximation of posteri or distribution to
a continuous approximation such that the resampling step is changed into simulating
an absolutely continuous distribution, hence producing a new particle system with n
different particle locations. The concept of discrete and continuous approximation of10

particle density is illustrated in Fig. 1. If the weights are concentrated on the limited
number of particles, the resampling in the discrete approximation (e.g. SIR particle
filter) may lead to a poor representation of the posterior density, while a continuous
approximation in regularized measure improves the diversity in the resampling step.

In the RPF, samples are drawn from the approximation15

p
(
xk |y1:k

)
≈

n∑
i=1

w i
kKh

(
xk−xi

k

)
(9)

where

Kh(x)=
1
hnx

K
(x
h

)
(10)

is the rescaled kernel density K (·); h> 0 is the bandwidth; and nx is the dimension of
the state vector x. The kernel density is a symmetric probability density function on20

<nx , such that

K >0,
∫
K (x)dx=1,

∫
xK (x)dx=0,

∫
‖x‖2K (x)dx <∞. (11)
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The kernel K (·) and bandwidth h are chosen so as to minimise the mean integrated
square error (MISE) between the true posterior density and the corresponding regular-
ized weighted empirical measure in Eq. (9), which is defined as

MISE(p̂)=E
[∫ [

p̂(xk |y1:k) −p(xk |y1:k)
]2dxk

]
(12)

where p̂(·|·) denotes the approximation to p(xk |y1:k) given by the right-hand side of5

Eq. (9). In the special case of equally weighted samples, w i = 1/n for i = 1,...,n, the
optimal choice of the kernel is the Epanechnikov kernel,

Kopt =

{
nx+2
2cnx

(1−‖x‖2)

0

if ‖x‖<1

otherwise
(13)

where cnx is the volume of the unit sphere of <nx . It is worth noting that the use of
kernel approximation becomes increasingly less appropriate as nx (dimensionality of10

the state) increases. To reduce the computational cost, the samples can be generated
from the Gaussian kernel instead of the Epanechikov kernel. The optimal bandwidth
with unit covariance matrix is

hopt =A ·N− 1
nx+4 with A=

[
4/(nx+2)

] 1
nx+4 (14)

The RPF differs from the SIR only in additional regularization steps when sample im-15

poverishment happens (effective particle number is less than threshold). The key step
is

xi ∗

k =xi
k+hoptDkε

i (15)

where xi ∗

k is new particle generated from kernel density; and Sk is the empirical co-
variance matrix such that DkD

T
k =Sk . Theoretical disadvantage of the RPF is that its20

samples are no longer guaranteed to asymptotically approximate those from the poste-
rior. This can be mitigated including the Markov chain Monte Carlo (MCMC) move step
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(Gilks and Berzuini, 2001) based on the Metropolis-Hastings algorithm (Robert and
Casella, 1999). The key idea is that a resampled particle is moved to a new state ac-
cording to Eq. (15), only if u≤α, where u∼U [0,1] and α is the acceptance probability.
Otherwise, the move is rejected.

α=min

1,
p
(
yk |x

i ∗

k

)
p
(
yk |xi

k

)
 (16)5

In Eq. (16), α becomes 1.0 when the likelihood of new particle is greater than that of
the previous particle. That means that the MCMC move step contributes for screening
bad particles in the regularization step ensuring particles asymptotically approximate
samples from the posterior. Although this approach is frequently found to improve
performance, despite a less rigorous deviation, RPF has not been introduced in hydro-10

logic data assimilation. In this study, the regularization and the MCMC move step are
implemented only when loss of sample diversity is detected in the updating stage.

3 Particle filter with lag time approach

In general, there are many types of state variables in a distributed hydrologic model and
each variable interacts with each other based on different time scales. For example,15

in catchment modeling, internal state variables may refer to two-dimensional distribu-
tion of soil moisture content, evapotranspiration and overland flow; and an observable
state may refer to streamflow flux at the monitoring sites. There is a time lag until the
changes of soil moisture distribution affect infiltration and sub-surface/surface runoff
processes and generated runoff is routed as streamflow into the measurement site.20

Hydrologic components in a model have usually different time scales, which needs to
be considered in the data assimilation process.

As stated by Salaman and Feyen (2010), this response time is usually larger than the
high-frequency discharge measurements. One simple approach is to use the delayed
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updating, which gives larger time intervals before updating. However, the delayed up-
dating leads to omitting large quantities of measurement information and fixed delay
assumption may result in inappropriate estimation, because a response time always
changes according to the current spatial distributions of the state and forcing variables.
Furthermore, when system dynamic is relatively fast (e.g. hourly-based hydrologic or5

hydraulic modeling cases), delayed updating may lead to missing of proper timing of as-
similation. That can make it hard to implement sequential data assimilation techniques
into hydrologic modeling. Thus, we propose a new lagged particle filtering approach
not only to consider different catchment responses but also to use whole measurement
information for data assimilation.10

Figure 2 shows an example of a newly proposed lagged particle filtering approach.
Here, k is the current time step and j is the lag time required for response of internal
state variables to be transmitted into the observable variables. Note that it is better to
set the lag time j large enough to cover plausible ranges as the system response is
time-variant. The assimilation window of the lagged filtering is defined from k− j to k15

time step. The procedure of the lagged filtering is as follows. (1) To have prediction at
the time step k, simulation starts from the time step k− j . (2) The weights of particles
are estimated according to the measurement at each time step. (3) When particles
arrive at the current time, the lagged weights are calculated through aggregating past
weights. (4) Resampling is executed according to the lagged weights. Note that state20

variables at the time step k − j +1 are resampled simultaneously with those at the
current time step. (5) For the next time step k+1, simulation starts from the time step
k−j+1 and has the same procedure from 1) to 4). In this manner, the sequential data
assimilation procedure is implemented at every time step without loss of measurement
information.25

Lagged weight, w i
lag, can be calculated through the aggregation of the past weights

as:

w i
lag ∝

j
Π
t=1

(
w i

k−j+t

)αt
(17)
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A lagged weight is normalized according to their summation. Weighting factor αt can
be decided via the prior information of system response or calibration processes. In
this study, we use a square root form of weighting factor as:

αt =
√
t t=1,...,j (18)

Using Eq. (18) means that we provide more confidence for the latest information. Com-5

pared to conventional particle filtering, an additional procedure needed in the lagged
filtering is only that state variables at the time step k− j +1 should be stored and re-
sampled according to lagged weights.

We combine the lagged filtering approach with the regularized particle filter (RPF) to
enhance the sample diversity. Figure 3 illustrates the regularization step in the lagged10

filtering window. If the effective particle number neff is less than threshold (neff <nthr),
the regularization step is executed performing the simulation in the same time loop
with different particle members, which are generated from kernel. Note that diversity
of particles is enhanced in this step because distribution of kernel density is usually
broader than process noise. As mentioned in the previous section, the Markov chain15

Monte Carlo (MCMC) move step is also implemented along with the lagged filtering to
make perturbed particle system via regularization asymptotically approximate samples
from the posterior. When each particle arrives in the current time step k, acceptance
probability α is calculated according to the lagged likelihood as shown in Eq. (16). If
a particle is rejected (u>α), state variables before regularization will be used without20

kernel perturbation.
Figure 4 summaries one cycle of RPF with the Markov chain Monte Carlo (MCMC)

move step under the lagged filtering approach. The assimilation window and basic
procedure before regularization are the same as explained above. In the regularization
step, new particles from kernel are propagated along the same time window. Arrived25

particles are accepted according to the acceptance probability of the MCMC move step
and vice versa. It is worth mentioning that the regularization step can be executed not
just in the sample impoverishment case but also in the particle collapse case, which

3395

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/3383/2011/hessd-8-3383-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/3383/2011/hessd-8-3383-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 3383–3420, 2011

Applying sequential
Monte Carlo methods

into a DHM

S. J. Noh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

means all particle have negligible weights falling outside of the measurement PDF. In
this case, the regularization step is used effectively for re-initialization of the particle
system.

4 Implementation

4.1 Study area5

The SMC methods are applied to the Katsura River catchment (Fig. 5) to demonstrate
the improvement of the accuracy of streamflow forecasting. This catchment is located
in Kyoto, Japan, and covers an area of 1100 km2 (887 km2 at the Katsura station) (see
Fig. 5). Topography is characterized by mountainous upstream in the North and a flat-
ter plain in the south. The elevation in the catchment ranges from 4 to 1158 m, with an10

average of about 325 m. The land use consists of forest (70%), agricultural area (14%)
and residential area (8%), respectively. There are 13 rainfall observation stations, 1
meteorological observation station and 4 river flow observation stations. Annual pre-
cipitation and temperature are about 1422 mm and 16.2 ◦C in Kyoto city (2001∼2010).
Precipitation is concentrated in the summer season from May to September. The15

Hiyoshi dam is located upstream, and the controlled outflow record from the dam reser-
voir is given as inflow to the hydrologic model and the model simulates rainfall-runoff
processes for the downstream of the dam.

4.2 Hydrological model and particle filtering

The hydrologic model used is the water and energy transfer processes (WEP) model,20

which is developed for simulating spatially variable water and energy processes in
catchments with complex land covers (Jia and Tamai, 1998; Jia et al., 2001). State
variables include soil moisture content, surface runoff, groundwater tables, discharge
and water stage in rivers, heat flux components, etc. (Fig. 6). The spatial calculation
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unit of the WEP model is a square or rectangular grid. Runoff routing on slopes and
in rivers is carried out by applying one-dimensional kinematical wave approach from
upstream to downstream. The WEP model has been applied in several watersheds
in Japan, Korea and China with different climate and geographic conditions (Jia et al.,
2001, 2009; Kim et al., 2005; Qin et al., 2008).5

Model setup uses 250 m grid resolution and an hourly time step. Simulation is di-
vided into two part; calibration (1 June–31 July 2007) and validation (1 July–31 August
2003). One month of warm-up period is added before the data assimilation starts.
We use hourly observed rainfall from 13 observation stations organized by the Min-
istry of Land, Infrastructure, Transport and Tourism in Japan (http://www1.river.go.jp/)10

and hourly observed meteorological data from Kyoto station including air temperature,
relative humidity, wind speed and duration of sunlight organized by Japan Meteorolog-
ical Agency (http://www.jma.go.jp/jma/index.html). Hourly observed discharges from
Katsura station is used for the data assimilation.

SRTM 90 m digital elevation map (DEM) was adopted (http://srtm.csi.cgiar.org/) and15

converted into 250 m resolution. Soil distribution was obtained from the website of
Food and Agriculture Organization of the United Nations (http://www.fao.org/nr/land/
soils/en/). Physical property of soil was derived from soil texture information using the
ROSETTA model (Schaap et al., 2001). However, the saturated hydraulic conductivity
of several soils was adjusted via calibration period as soil property estimated from20

large scale soil map has large uncertainty. For other parameters related with aquifer
and vegetation, we applied parameter ranges from previous studies mentioned above.
Artifical water use was approximately estimated as 3 m3 s−1 and subtracted directly
from simulated discharge at the Katsura station.

Ensemble simulation of 384 particles was conducted on a multi-processing com-25

puter (128 cores in the supercomputing system of Kyoto University) via parallel-
computing techniques of open message passing interface (MPI) (http://www.open-mpi.
org/). Parallel programming is written using single-program multiple-data (SPMD) ap-
proach, which means the same modeling procedure with different state variables. A
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master process aggregates particle statistics and controls resampling/regularization
steps. Message passing commands of MPI is used effectively to transfer numerous
information of spatially distributed state variables from one particle to another in the re-
sampling step. Elapsed time is about 5 h in SIR, 10 h in lagged SIR and 13 h in lagged
RPF for 4 month period simulation with hourly time step, respectively.5

4.3 Process and measurement error models

Particle filters perform suboptimal estimation of the system states considering the un-
certainty in both measurement and modeling system. Therefore, the choice of the error
models is crucial to obtain a better estimation (Weerts and El Serafy, 2006). Another
important point is to decide hidden state variables for filtering. As there are numerous10

state variables in a distributed hydrologic model, it is not practical to consider uncer-
tainty of all state variables with limited number of particles. In that case, it is required to
choose limited number of state variables, which process error of the modeling system
is aggregated in, and is easy to control an observable state. In this study, we select soil
moisture content and overland flow in each grid as hidden state variables and stream-15

flow at the Katsura station as an observable variable. Global multipliers are introduced
to perturb state variables stochastically and effectively. In case of soil moisture con-
tent, total soil moisture depth at the previous time step Sk−1 is aggregated for three soil
layers within the catchment as:

Sk−1 =
3∑

l=1

m∑
j=1

θl
jd

l
j (19)20

where θl
j and d l

j are is volumetric soil moisture content (m3 m−3) and depth (m) in the
layer l and m represent the number of soil layers and the total number of grids within the
catchment, respectively. Then, process noise of soil moisture content wsoilk

is added to
aggregated variable Sk−1 as:

Ŝk =Sk−1+wsoilk
(20)25
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wsoilk
is assumed as Gaussian distribution N (0,σ2

soilk
) having a heteroscedastic stan-

dard deviation as:

σsoilk
=αsoilSk−1+βsoil (21)

In this study, we apply for 0.05 of αsoil and 50 mm of βsoil, which means proceess er-
rors of 5% of standard deviation having small constant error. When process error is5

generated for each particle, it is applied in a multiplicative way using Eqs. (22) and (23).

γs =
Ŝk

Sk−1
(22)

θ̂l
j =γsθ

l
j (23)

It is worth noting that non-linearity of the distributed hydrologic model can alleviate
loss of spatial diversity in the pertubation process, which is one of disadvantages of10

global multipliers. For example, even if the same noise is applied, spatial pattern of
state variables can be different due to the condition of previous time step and non-
linear system response for that. The perturbation of overland flow is also applied in
a multiplicative way as:

q̂ovj
= (1+wovk

)qovj
(24)15

where process noise of overland flow wovk
is assumed as Gaussian distribution

N (0,σ2
ovk

). The standard deviation of overland flow noise σovk
is parameterized as

follows:

σovk
=cov10αovexp(−ysimk−1

/βov) (25)

where, αov and βov are adaptable parameters with setting −10 and 5 m3 s−1, respec-20

tively. ysimk−1
is the simulated discharge of data assimilation point at the previous time

step. cov is the constant coefficent. The value of cov is estimated through the calibration
periods and set as 0.03 for the whole simulation. This formulation has been originally
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proposed by Seo et al. (2009) to enhance the forecast in periods of low flow. Equa-
tion (25) specifies progressively smaller uncertainty if the simulated flow falls below the
threshold, βov (m3 s−1). We adopt this error formulation because error of overland flow
routing is expected to reduce in low flow periods.

The measurement error of the discharge is assumed as Gaussian distribution5

N (0,σ2
obsk

) similar to previous studies (Georgakakos, 1986; Weerts and El Serafy,
2006; Salaman and Feyen, 2010). The standard deviation of the measurement error is
chosen as:

σobsk
=αobsyk+βobs (26)

In Eq. (26) αobs is set as 0.1 which means 10% of the measurement error, and the10

constant coefficient βobs is applied as 5 m3 s−1 to consider uncertainty in periods of
low flow such as artificial water use, dam reservior control and etc. The uncertainty of
forcing data is not considered in this study to make it easy to evaluate the difference of
each particle filter. 15% of perturbation from the uniform distribution is applied for the
initial soil moisture condition.15

5 Results and discussion

We implement three different versions of particle filters, which are SIR, lagged SIR and
lagged RPF, for the streamflow forecasting using the WEP model. Lagged filtering is
implemented for SIR and regularized particle filter (RPF). Based on our knowledge on
the WEP model behaviour and various tests in the calibration period, the lag time is20

set as 6 h. Thus, the lagged SIR/RPF starts its prediction from 6 h ago, executing re-
sampling at every updating time step. The lagged RPF has an additional regularization
step when sample impoverishment happens or all the particle fall outside of the mea-
surement PDF. For the evaluation of the forecasting accuracy, Nash-Sutcliffe efficiency
is calculated as:25
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E =1−

∑T
k=1

(
yk−ysimk

)2

∑T
k=1 (yk− ȳ)2

(27)

where y is observation, ȳ is the mean of observation, ysimk
is the forecasted streamflow

at the measurement site and T is the total number of time steps.
As an additional evaluation method on the performances of probabilistic prediction,

we use the predictive QQ plot. This method has originated from the economic field5

(e.g., Diebold et al., 1998) and has been adapted for the verification tools used for
probabilistic forecasts of hydrological and meteorological variables (Gneiting et al.,
2007; Laio and Tamea, 2007; Thyer et al., 2009; Salaman and Feyen, 2009, 2010).
The predictive QQ plot is established by comparing the empirical cumulative density
function (CDF) of the sample of p values, which is the probability of “observation” on10

the CDF of the “prediction”, with the CDF of a uniform distribution. It is based on the
hypothesis that the p value is a realization from a uniform distribution on [0,1], under
the assumption that the observation yk is a realization from the predictive distribution.
Detailed description on the predictive QQ plot about construction and interpretation
can be found in Laio and Tamea (2007) and Thyer et al. (2009).15

The diversity of particle system is an important index in a particle filtering process,
because the posterior distribution is estimated from the distribution of each particle
associated with its weight. This sample impoverishment problem is checked with a ratio
of the effective particle number nratio using Eq. (8).

Figure 7 illustrates the results of the lagged regularized PF using the WEP model20

during the validation period (1 June to 31 August 2003). Observed discharge is com-
pared with two-step-ahead probablistic forecast of the streamflow at the Katsura station
(Fig. 7a). The forcasted streamflow shows good confirmity between observation and
simulation, while the deterministic modeling show significant underestimation in the
overall rainfall events. Traces of volumetric soil moisture (m3 m−3) is estimated via av-25

eraging soil moisture of each soil layer for all grids within the catchment (Fig. 7b). Volu-
metric soil moisture show sharp rising in the events, followed by fluctuating recession.

3401

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/3383/2011/hessd-8-3383-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/3383/2011/hessd-8-3383-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 3383–3420, 2011

Applying sequential
Monte Carlo methods

into a DHM

S. J. Noh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

The Nash-sutcliffe model efficiency for calibration and validation period is shown
in Table 1. In terms of model efficiency, forecast via PFs outperforms deterministic
modeling and the accuracy of lagged RPF is higher than other filters in the calibration
period.

Figure 8 illustrates forecasted discharge for two rainfall events (8 to 19 August 2003)5

within the validation period. While the mean values of three particle filters show similar
pattern, 90% probabilistic ranges of the streamflow via the SIR particle filter is larger
than those via the lagged filtering.

Traces of updated hidden states and their distribution via several PFs are shown in
Fig. 9 and the plotted time period (8 to 19 August 2003) is identical to Fig. 8. Behavior10

of internal state (soil moisture) can be seen through volumetric soil moisture averaged
within the catchment (Fig. 9a). Averaged volumetric soil moisture shows similar pattern
in three particle filters, whereas the posterior distribution of the state variables via SIR
is more diffusive than those via the lagged RPF. Narrow confidential intervals of internal
and observable states via the lagged RPF show the enhancement of the probabilistic15

forecast. On the contrary, wide-spread confidential bands via SIR mean that particles
generated from state perturbation are not properly filtered out during the updating step.

As we see through Figs. 8 and 9, in case of probabilistic modeling, we need a tool
to check the adequacy of the predictive distribution. The predictive QQ plot is one of
alternatives, providing a better summary of the performance of probabilistic predictions20

than simple hydrograph (e.g., Thyer et al., 2009; Salaman and Feyen, 2009, 2010).
Figure 10 show the predictive QQ plots during the calibration and validation period at
the Katsura station. Over-estimated predictive uncertainty is clearly seen in the results
of SIR, while the results of two lagged filters show slightly under-predicted forecasts.
In case of SIR, pertubed internal state of a ditributed hydrologic model cannot be prop-25

erly updated within one time step interval. Therefore, the uncertainty of internal state
diverses until the effect of the perturbation is propogated to the observation station
usually located in the downstream. On the other hand, updating can be properly exe-
cuted in the lagged filtering approach, considering response time of internal hydrologic
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processes. However, as estimation accuracy may be lowered in lagged filtering, more
advanced calculation of lagged weight are required.

The particle diversity within the simulation is evaluated via ratio of the effective par-
ticle number nratio shown in Fig. 11. The lowest value of the effective particle number
represents whether significant loss of sample diversity happens during the simulation.5

We can see sample impoverishment in case of both lagged and simple SIR filters. As
stated by other researches, SIR approach is very prone to sample impoverishment,
reducing potentials of filtering. However, the lagged RPF does not show evidence of
particle collapse in this implementation, executing the regularization step when a loss
of diversity happens. In this study, the threshold for nratio is set to 0.9. Also note that10

the RPF can be applicable without a lagged filtering approach but proper particles are
unrecognizable in the MCMC move step.

6 Conclusions

A lagged particle filtering approach was proposed to consider different response of in-
ternal states in the distributed hydrologic modeling system and the regularized particle15

filter with the MCMC move step was implemented to preserve sample diversity under
the lagged filtering approach. As a process-based distributed hydrologic model, WEP
was implemented to enhance forecasting capability of the streamflow.

Two step ahead prediction by particle filters reproduced the streamflow properly
compared to that of deterministic modeling in terms of model efficiency index. The20

enhancement of the probabilistic forecast via the lagged RPF was consistently seen
through relatively narrow confidential intervals of internal and observable states. In
terms of the predictive QQ plot, lagged filtering is evaluated to have more proper prob-
abilistic bands, whereas SIR reproduced more diffuse probable density. The preserva-
tion of particle diversity was shown in the regularized particle filter with MCMC move25

step.
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SMC methods have significant potential for high non-linearity problems, especially for
process-based distributed models in the hydrologic investigation. However, the com-
putational cost and vague adequacy of SMC for distributed modeling have been bottle-
neck for their practical implementation. As shown in this study, particle filtering process
can be effectively parallelized and implemented in the multi-core computing environ-5

ment via MPI library. The lagged RPF is expected to be used as one of frameworks
for sequential data assimilation of process-based distributed modeling. However, as
Weerts and El Serafy (2006) stated, attention also should be focused on development
of error models to account for distributed internal processes properly. More advanced
treatment of lagged weights and effective sequential estimation method of model pa-10

rameters are remained as open problems, indeed.
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Table 1. Nash-Sutcliffe model efficiency.

Methods 1 Jun to 31 Jul 2007 1 Jun to 31 Aug 2003

Lagged RPF 0.971 0.982
Lagged SIR 0.969 0.982
SIR 0.966 0.985
Deteministic 0.875 0.704
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(a) (b)

Fig. 1. Regulalized particle filter. (a) Weighted empirical measure. (b) Regularized measure
by kernel. Adapted from Musso et al. (2001).
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Fig. 2. The concept of a lagged particle filtering approach.
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Fig. 3. Particle traces in the regularized step with the MCMC move step under the lagged
filtering approach.
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Fig. 4. The flowchart of the regularized particle filter with the MCMC move step in the lagged
filtering approach.
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Fig. 5. The Katsura River catchment.
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Fig. 6. Vertical structure of WEP model. Adapted from Jia et al. (2009).
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(a)

(b)

Fig. 7. Results of the lagged regularized PF using the WEP model by assimilating hourly
streamflow of the Kastura gauaing station during the validation period (1 June to 31 Au-
gust 2003). (a) Observed versus 2-h-lead forecast at the Katsura station. The black dots
represent observed discharge. The blue line and area represent mean value and 90% con-
fidential interval, respectively. A dashed line represents a deterministic modeling case. (b)
Traces of volumetric soil moisture estimated from total soil moisture depth within the catch-
ment. The blue line and area represent mean value and 90% confidential interval, respectively.
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(a)

(b)

(c)

Fig. 8. Observed versus 2-h-lead forecast at the Katsura station via several PFs (8 to 19 August
2003). (a) The lagged RPF. (b) The lagged SIR. (c) The SIR. A dashed line represents a de-
terministic modeling case. The blue line and area represent mean value and 90% confidential
interval, respectively.
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(a)

(b)

(c)

Fig. 9. Results of several PF (8 to 19 August 2003). (a) Traces of volumetric soil moisture
estimated from total soil moisture depth within the catchment. The black, grey dashed and blue
dalshed lines represent mean value of lagged RPF, lagged SIR and SIR, respectively. (b) and
(c) represent posterior distributions of volumetric soil moisture of lagged RPF (b) and SIR (c)
at four time point of (a) (black bars).

3418

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/3383/2011/hessd-8-3383-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/3383/2011/hessd-8-3383-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 3383–3420, 2011

Applying sequential
Monte Carlo methods

into a DHM

S. J. Noh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(a)

(b)

Fig. 10. The predictive QQ plot for 2-h-lead forecast via several particle filters. (a) 12 to17 July
2007 (within the calibration period). (b) 8 to 19 August 2003 (within the validation period).
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(a)

(b)

Fig. 11. Distributions of ratio of the effective particle number nratio. (a) The calibration period
(1 June to July 2007). (b) The validation period (1 June to 31 August 2003). Black lines
represent the maximum and minimum bounds of nratio. The grey boxes represent 90% bounds
of nratio.
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